476 research outputs found

    Lyapunov exponents of heavy particles in turbulence

    Get PDF
    Lyapunov exponents of heavy particles and tracers advected by homogeneous and isotropic turbulent flows are investigated by means of direct numerical simulations. For large values of the Stokes number, the main effect of inertia is to reduce the chaoticity with respect to fluid tracers. Conversely, for small inertia, a counter-intuitive increase of the first Lyapunov exponent is observed. The flow intermittency is found to induce a Reynolds number dependency for the statistics of the finite time Lyapunov exponents of tracers. Such intermittency effects are found to persist at increasing inertia.Comment: 4 pages, 4 figure

    Acceleration statistics of heavy particles in turbulence

    Get PDF
    We present the results of direct numerical simulations of heavy particle transport in homogeneous, isotropic, fully developed turbulence, up to resolution 5123512^3 (Rλ185R_\lambda\approx 185). Following the trajectories of up to 120 million particles with Stokes numbers, StSt, in the range from 0.16 to 3.5 we are able to characterize in full detail the statistics of particle acceleration. We show that: ({\it i}) The root-mean-squared acceleration armsa_{\rm rms} sharply falls off from the fluid tracer value already at quite small Stokes numbers; ({\it ii}) At a given StSt the normalised acceleration arms/(ϵ3/ν)1/4a_{\rm rms}/(\epsilon^3/\nu)^{1/4} increases with RλR_\lambda consistently with the trend observed for fluid tracers; ({\it iii}) The tails of the probability density function of the normalised acceleration a/armsa/a_{\rm rms} decrease with StSt. Two concurrent mechanisms lead to the above results: preferential concentration of particles, very effective at small StSt, and filtering induced by the particle response time, that takes over at larger StSt.Comment: 10 pages, 3 figs, 2 tables. A section with new results has been added. Revised version accepted for pubblication on Journal of Fluid Mechanic

    The decay of homogeneous anisotropic turbulence

    Get PDF
    We present the results of a numerical investigation of three-dimensional decaying turbulence with statistically homogeneous and anisotropic initial conditions. We show that at large times, in the inertial range of scales: (i) isotropic velocity fluctuations decay self-similarly at an algebraic rate which can be obtained by dimensional arguments; (ii) the ratio of anisotropic to isotropic fluctuations of a given intensity falls off in time as a power law, with an exponent approximately independent of the strength of the fluctuation; (iii) the decay of anisotropic fluctuations is not self-similar, their statistics becoming more and more intermittent as time elapses. We also investigate the early stages of the decay. The different short-time behavior observed in two experiments differing by the phase organization of their initial conditions gives a new hunch on the degree of universality of small-scale turbulence statistics, i.e. its independence of the conditions at large scales.Comment: 9 pages, 17 figure

    Heavy particle concentration in turbulence at dissipative and inertial scales

    Get PDF
    Spatial distributions of heavy particles suspended in an incompressible isotropic and homogeneous turbulent flow are investigated by means of high resolution direct numerical simulations. In the dissipative range, it is shown that particles form fractal clusters with properties independent of the Reynolds number. Clustering is there optimal when the particle response time is of the order of the Kolmogorov time scale τη\tau_\eta. In the inertial range, the particle distribution is no longer scale-invariant. It is however shown that deviations from uniformity depend on a rescaled contraction rate, which is different from the local Stokes number given by dimensional analysis. Particle distribution is characterized by voids spanning all scales of the turbulent flow; their signature in the coarse-grained mass probability distribution is an algebraic behavior at small densities.Comment: 4 RevTeX pgs + 4 color Figures included, 1 figure eliminated second part of the paper completely revise

    Anomalous and dimensional scaling in anisotropic turbulence

    Get PDF
    We present a numerical study of anisotropic statistical fluctuations in homogeneous turbulent flows. We give an argument to predict the dimensional scaling exponents, (p+j)/3, for the projections of p-th order structure function in the j-th sector of the rotational group. We show that measured exponents are anomalous, showing a clear deviation from the dimensional prediction. Dimensional scaling is subleading and it is recovered only after a random reshuffling of all velocity phases, in the stationary ensemble. This supports the idea that anomalous scaling is the result of a genuine inertial evolution, independent of large-scale behavior.Comment: 4 pages, 3 figure

    A pilot study on the e-kayak system: A wireless DAQ suited for performance analysis in flatwater sprint kayaks

    Get PDF
    Nowadays, in modern elite sport, the identification of the best training strategies which are useful in obtaining improvements during competitions requires an accurate measure of the physiologic and biomechanical parameters that affect performance. The goal of this pilot study was to investigate the capabilities of the e-Kayak system, a multichannel digital acquisition system specifically tailored for flatwater sprint kayaking application. e-Kayak allows the synchronous measure of all the parameters involved in kayak propulsion, both dynamic (including forces acting on the paddle and footrest) and kinematic (including stroke frequency, displacement, velocity, acceleration, roll, yaw, and pitch of the boat). After a detailed description of the system, we investigate its capability in supporting coaches to evaluate the performance of elite athletes\u2019 trough-specific measurements. This approach allows for a better understanding of the paddler\u2019s motion and the relevant effects on kayak behavior. The system allows the coach to carry out a wide study of kayak propulsion highlighting, and, at the same time, the occurrences of specific technical flaws in the paddling technique. In order to evaluate the correctness of the measurement results acquired in this pilot study, these results were compared with others which are available in the literature and which were obtained from subjects with similar characteristics

    Breakup of small aggregates driven by turbulent hydrodynamic stress

    Get PDF
    Breakup of small solid aggregates in homogeneous and isotropic turbulence is studied theoretically and by using Direct Numerical Simulations at high Reynolds number, Re_{\lambda} \simeq 400. We show that turbulent fluctuations of the hydrodynamic stress along the aggregate trajectory play a key role in determining the aggregate mass distribution function. Differences between turbulent and laminar flows are discussed. A novel definition of the fragmentation rate is proposed in terms of the typical frequency at which the hydrodynamic stress becomes sufficiently high to cause breakup along each Lagrangian path. We also define an Eulerian proxy of the real fragmentation rate, based on the joint statistics of the stress and its time derivative, which should be easier to measure in any experimental set-up. Both our Eulerian and Lagrangian formulations define a clear procedure for the computation of the mass distribution function due to fragmentation. Contrary, previous estimates based only on single point statistics of the hydrodynamic stress exhibit some deficiencies. These are discussed by investigating the evolution of an ensemble of aggregates undergoing breakup and aggregation.Comment: 4 Latex pages, 4 figure

    Effects of forcing in three dimensional turbulent flows

    Get PDF
    We present the results of a numerical investigation of three-dimensional homogeneous and isotropic turbulence, stirred by a random forcing with a power law spectrum, Ef(k)k3yE_f(k)\sim k^{3-y}. Numerical simulations are performed at different resolutions up to 5123512^3. We show that at varying the spectrum slope yy, small-scale turbulent fluctuations change from a {\it forcing independent} to a {\it forcing dominated} statistics. We argue that the critical value separating the two behaviours, in three dimensions, is yc=4y_c=4. When the statistics is forcing dominated, for y<ycy<y_c, we find dimensional scaling, i.e. intermittency is vanishingly small. On the other hand, for y>ycy>y_c, we find the same anomalous scaling measured in flows forced only at large scales. We connect these results with the issue of {\it universality} in turbulent flows.Comment: 4 pages, 4 figure
    corecore